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Abstract 

The paper outlines a new model for demographic projections by detailed 
population categories that are required in the development of sustainable 
(elderly) health care systems and pension systems. 
 The methodology consists of a macro-model (MAC) that models 
demographic changes at the population level and a micro-model (MIC) 
that models demographic events at the individual level. Both models are 
multistate models that rely on rates of transition between states of 
existence or stages of life. MAC focuses on transitions among functional 
states by age and sex. The transitions determine the distribution of cohort 
members among functional states. The output of MAC consists of cohort 
biographies. MIC addresses demographic events and other life transitions 
at the individual level. It is a micro-simulation model that produces 
individual biographies. This paper describes approaches to functional 
population projection and provides a detailed description of the multistate 
model. It also contains an overview of the MicMac project. 

 
emographic projections are usually confined to populations 
disaggregated by age, sex and sometimes race/ethnicity. The 
general methodology, the cohort-component method, is well-

established. The basic approach is to distinguish birth cohorts, to determine 
the number of survivors in the base year and to determine for each cohort and 
for each future year the number of persons by age and sex that (1) enter a 
population through birth or migration and (2) leave a population due to 
death or emigration. The number of entries and exits are based on rates of 
birth, death and emigration by age and sex, and number of immigrants by 
age and sex. The estimation of empirical rates from data (often incomplete 
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or defective data) and the prediction of future rates involve important 
methodological issues.  
 The projected population by age and sex serves as an input in functional 
population projections, which are related to particular functions or activities 
in society. They include projections of the population by functional status 
such as labour force status, educational status, health status and status in the 
household. These projections are made to determine the projected need for 
some “function” – a product, a service, an allowance, an activity or a facility 
(Kono 1993). Examples include:  

• The future size of the labour force to determine the supply of labour and 
the demand for jobs. 

• The future size of the population retired from the labour force to 
determine the demand for pensions. 

• The future size of school enrolments to determine the demand for 
teachers and buildings and to determine the population composition by 
level of education and hence the human capital. 

• The future size of the population by health status and/or disability 
status to determine the demand for health care including the number of 
physicians and hospital beds. 

• The future number of households by size and type to determine the 
demand for housing and durable consumer goods.  

• The future number of people eligible for assistance of different type. 
Eligibility criteria frequently include age, sex and functional status (eg. 
level of income, health status).  

• The future size of vulnerable groups in society. 
 
Despite the wide variety of functions, from a methodological viewpoint 
traditional functional projections differ from each other only in minor detail. 
Traditionally, people of a given age and sex are allocated to functional states 
using a set of prevalence rates, a distribution function or another allocation 
mechanism. The method is referred to as distribution method. In the 
forecasting literature the method is also known as static as opposed to 
methods that are based on transition rates (or incidence rates) and that are 
dynamic (such as the multistate model) (eg. Zeng Yi et al. 1997). Examples of 
the static method based on distributions are the headship rate method for 
household projections, labour force projections based on labour force 
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participation rates, educational projections based on enrolment rates, the 
ratio method of sub national population projection, and health status 
projections based on prevalence rates (‘Sullivan method’). The distribution 
function may change over time to capture real or assumed shifts in 
behaviour or conditions. For illustrations of the static method in functional 
population projections, see Bogue et al. (1993:Chapter 18). 
 In the dynamic method, the distribution of people among functional 
states is not imposed by a distribution function but is the outcome of 
transitions people make in life. People move between functional states and as 
a consequence, the structure of the population changes. The rates of 
transition determine the population dynamics and the rates may change in 
time and may vary between subpopulations. In the dynamic method, several 
states of existence are distinguished and the transitions between the states 
are considered. The method is known as the multistate method. Because of 
the pivotal role of transitions, multistate models picture more closely the 
mechanism of demographic change taking place in the real world. As a result, 
they are better suited for integrated population projections in which 
functional states and interactions between functional states play a crucial 
role. In addition, the transitions provide a way to assess the impact on 
population dynamics of behavioural changes brought about by technological, 
economic or cultural change, or policies. The multistate method has become 
the standard methodology among demographers (Rogers 1975, 1995; 
Willekens and Drewe 1984; Keyfitz 1985; Ahlburg et al. 1999; Van Imhoff 
and Keilman 1991; Zeng Yi 1991). It has been applied for projecting 
regional populations, and projections by educational status, household 
status, labour force participation and health/disability status. The multistate 
model is currently receiving much interest in epidemiology and public 
health (for a review, see Commenges 1999; Hougaard 1999, 2000). A major 
difference between multistate models in demography and epidemiology is 
that in demography age is a key variable, whereas in epidemiology it is not 
(yet). 
 The choice of static versus dynamic method has been the subject of long 
debates in demographic analysis and forecasting. In labour force projections, 
the debate was most intensive in the early 1980s after the publication in 
1982 by the Bureau of Labor Statistics of multistate tables of working life 
(Smith 1982). In health status projections, the debate is of a more recent 
date (eg. Crimmins et al. 1994; Mathers and Robine 1997). Some authors 
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attempted to reconcile the two approaches (eg. Newman 1988). In his review 
of functional population projections, Kono asserts that “Because of complex 
and precise data demands, however, almost no multistate models which 
could be used reliably in official national projections, beyond regional 
projections, have been developed” (Kono 1993:18.2). In this paper, we aim to 
show that multistate models represent an adequate basis for the specification 
of  functional population projection models despite data demands. 
 Forecasting involves dealing with uncertainty since the future is 
inherently uncertain. Two basic issues arise. The first is to quantify the 
uncertainty, ie. to indicate the degree of precision of the projected figures. 
The precision is high when a predicted figure is likely to be true. The second 
is to reduce the uncertainty, i.e. to increase the predictive performance of 
forecasts. The quantification of uncertainty has received much attention in 
the scholarly literature. The traditional approach is to specify a few sets of 
vital rates and migration rates that represent possible futures (scenarios). A 
more recent approach is to generate probabilistic projections that are based 
on the assumption that point forecasts are available for the relevant vital 
rates and migration rates, and the expected uncertainty of the forecast can 
be characterized in terms of variances and certain simple covariance 
structures for the error terms. The outcome is a predictive interval that 
specifies the probability that the future population will be between x and y 
million (eg. Alho and Spencer 1997; Lee 1998; Alho 2003). In order to 
determine the nature of the distribution characterizing vital rates and the 
width of the distribution, three alternative approaches have been proposed 
in the literature. One approach is based on statistical time series analysis, 
the second uses an extrapolation of errors observed in past projections, 
while the third derives uncertainty bands from expert judgement. A 
synthesizing approach that includes the key elements of all three approaches 
has been outlined by Lutz et al. (1997).  
 The reduction of uncertainty has been studied less systematically in the 
scholarly literature although it is a core issue in the production of more 
accurate and reliable forecasts. Strategies for reducing uncertainty include 
(1) a better understanding of the mechanisms that govern demographic 
change and (2) a better measurement of vital rates (demographic 
parameters) for subpopulations. The second strategy, which involves better 
data, received extensive coverage in the literature. The first strategy was 
much less the subject of systematic investigation. It involves a better use of 
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scientific knowledge in demographic projections. Twenty years ago, Keyfitz 
asked the question “Can knowledge improve forecasts?”. He stated that “For 
policy purposes, causal knowledge is essential; for forecasting it is desirable, 
of course, but the forecast is not necessarily a failure if the causal 
mechanisms remains undiscovered. Observed regularities serve perfectly 
well for forecasting as long as they continue to hold.” (Keyfitz 1982:747). 
For many years, the search for regularities dominated the demographic 
forecasting literature. There is nothing wrong with that. As Keyfitz 
observed “Pending the discovery of a truly behavioral way of estimating the 
future, we cannot afford to be ashamed of extrapolating the observed 
regularities of the past” (Keyfitz 1982:747). About ten years ago and in the 
context of forecasting the health of the elderly population, Manton, Singer 
and Suzman are less at ease when they summarized the state of the art as 
follows:  

Current forecasting procedures are often based on empirical extrapolations 
and do not directly reflect physiological processes at the individual level or 
the mixture of individuals in a cohort. The failure to deal with individual 
aging trajectories, and their cohort mix, makes it difficult to use 
epidemiological and biomedical evidence on the impact of health changes 
on the organism in forecasts.”(Manton et al. 1993:25).  

 
The effective use of substantive knowledge on causal mechanisms remains a 
challenge. Most demographic projection models have limited scope for 
incorporating substantive knowledge on causal mechanisms. Multistate 
models have that scope. 
 Over the years, researchers tried to improve the predictive performance of 
the models they developed by incorporating substantive knowledge on 
biological and behavioural mechanisms underlying demographic change. 
When Keyfitz published his views, no generally accepted framework existed 
that encompassed the many factors affecting demographic processes in a 
dynamic way and allowed a causal analysis. Today that framework exists. 
During the past decades, the life course paradigm has become a 
“metatheoretical perspective” that integrates biological processes, past 
experiences (antecendents) and historical context (Giele and Elder 1998:21). 
It provides a way to combine biological processes, cognitive processes and 
social processes that shape the lives and behaviours of people. It also 
provides a logical framework to integrate risk factors (particular attributes) 
and exposure analysis (duration at risk of particular events and risk levels). 
In the behavioural and social sciences and in epidemiology, biological and 
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behavioural mechanisms are increasingly being studied from a life-course 
perspective (eg. Giele and Elder 1998; Elder 1999; Kuh and Ben-Shlomo 
1997; Barker 1998; Ben-Shlomo and Kuh 2002; Kuh and Hardy 2002; WHO, 
2002; Halfon and Hochstein 2002). The concept of a life course refers to the 
way in which the countless aspects of our lives are interwoven and shaped 
by biological, technological, cultural and institutional influences and how 
their interaction results in an organic system that evolves in time. The 
factors affecting our lives include personal characteristics, individual 
histories, contextual factors and collective histories. Since the life course is 
embedded in a historical context, the effects of these factors are revealed 
more clearly if different cohorts (or generations) are considered. The life 
course paradigm continues to be a successful organizational principle for 
research. It has been proposed as a paradigm for demographic forecasting 
(Willekens 2002). It is gradually becoming a paradigm in policy making in 
the private and public sector. It is the dominant framework that underlies 
life planning, a subject that is receiving a growing interest as the population 
ages and the role of government in social support is being debated. 
Governments and financial institutions are providing tools for assessing 
lifetime financial and other consequences of life events such as marriage, 
divorce, childbirth, and retirement. New government policies are introduced 
that adopt a life course perspective (Rowe 2003). For example, health 
policies are increasingly targeting risk factors that affect health in later life 
(eg. smoking and obesity), and the provision of pensions is increasingly 
being discussed within the context of life planning extending over the entire 
life course. 
 This paper defends three complementary views: 

1. Functional population projections are essentially projections of cohort 
biographies. Functional population projections pertain to different 
domains of life including work, family, health and residence. The aim of 
functional population projections is to project how many members of a 
real or synthetic cohort occupy the functional states at a given age and a 
given point in time. In other words, the aim of functional population 
projections is to project state occupancies. The sequence of state 
occupancies by cohort members as they age describes a cohort 
biography.1 Consequently, functional population projections are 
essentially projections of cohort biographies (biographic projections).  
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2. Whenever possible, functional population projections should utilize multistate 
models since they picture more closely the mechanisms of demographic change. 
Static projection models rely on observed state occupancies (prevalence 
rates, ratio method). However, the state occupancies are the outcome of 
state transitions at earlier ages.  The dynamic method derives state 
occupancies from transitions between functional states. The transitions 
are governed by transition rates (or incidence rates) and transition 
probabilities. 

3. The life course offers a logical framework for incorporating substantive 
knowledge in forecasts. Knowledge on biological and behavioural 
mechanisms can indeed improve forecasts and the life course is the way 
to incorporate substantive knowledge. Techniques of event history or 
life history modeling permit causal analysis (Blossfeld and Rohwer 
2002). They can be extended to forecasting.  

4. Functional population projections should evolve to projections of individual 
biographies. Cohort members differ in personal attributes and living 
conditions (context). The best approach to account for these differences 
is to distinguish individuals and to characterize each individual by a 
bundle of attributes. These virtual or synthetic individuals bridge the 
micro-macro gap in population forecasting. The life courses of these 
individuals may be projected using techniques of micro-simulation. The 
aggregation of the individual biographies that result yields a bottom-up 
estimate of the cohort biography.  

 
This paper suggests a shift from conventional population projection, with its 
emphasis on numbers of people, to a projection of the lives of people. It links 
macro-level models of population dynamics with micro-level models of the 
individual life course. The life course is viewed as a sequence of states (or 
stages) and events that involve transitions from one state to another. The 
advantages of such a shift are the following. 
i. Population heterogeneity can be dealt with in a better way than when 

other approaches are adopted. Traditional projections assume that 
members of the same cohort have identical demographic behaviour. 
Within-cohort differences are introduced by stratifying the population 
into subpopulations on the basis of significant attributes such as sex, 
marital status, health status, and region of residence. Membership of a 
subpopulation is usually not fixed forever. During the life course, people 
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move between subpopulations. They marry and divorce, change health 
status and migrate. Members of the same stratum or subpopulation are 
not homogeneous either; they may differ in many ways and the 
differences are likely to affect their chances for survival, the number of 
children they have, and other aspects of demographic behaviour. An 
investigation and representation of these differences at the population 
level becomes infeasible quickly. An approach that focuses on individual 
actors, their lifestyles and life courses, facilitates the implementation of 
heterogeneity. 

ii. Population dynamics is the outcome of changes in the relative size of 
subpopulations (composition effect) and changes in the behaviour of 
members of a subpopulation (rate effect). Population forecasting 
involves the prediction of or hypotheses about changes at the individual 
level. Since demographic events are embedded in the life course, these 
predictions are difficult to make without a life course perspective. For 
instance, it has been stressed that mortality projections should use the 
growing insights in the physiological mechanisms underlying aging and 
their relation to mortality (Manton 1993:79). Considerable progress has 
been made. Yashin (2001) reviews mortality models that incorporate 
theories of aging. What applies to mortality, applies to fertility, 
migration, marital status change, and other demographic events.   

iii. Life course projections provide information not available in regular 
functional population projections. Functional projections provide 
information on state occupancies and types and numbers of state 
transitions at some future time. Life course projections also provide 
sequences of states occupied (pathways) and estimates of expected 
sojourn times in the different states or episodes of life. The episodes may 
relate to unemployment, disease, dependency, or poverty. For instance, 
population projections generally include estimates of dependency ratios, 
but the expected duration of dependency remains unknown. Life course 
projections provide information on expected sojourn times in 
dependency. For instance, unemployment projections would be more 
relevant to policy making if durations of unemployment spells would be 
predicted in addition to the proportion unemployed. 

iv. The projection of the lives of people has significance in its own right, 
independent of its contribution to improved population forecasts. The 
prediction of the probability of an event in a given period or a lifetime 
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has significance beyond its meaning for changes at the population level. 
Examples include the prediction of the impact of risk factors on the 
incidence of a chronic disease, the likelihood of deviant or criminal 
behaviour, the probability that a marriage ends in a divorce, the 
probability of entry into relative poverty, etc.. The number of papers on 
these subjects is immense. There exists however a common modelling 
approach that is often used. It is the prediction of probabilities based on 
hazard functions estimated conditionally on risk factors and other 
covariates that affect the rate of occurrence, sometimes augmented by 
unobserved random effects. The incidence is often linked to events and 
experiences early in life (including foetal life and infancy). The term 
“programming” has been used to describe a process whereby a stimulus 
at a sensitive or critical period of development has lasting or lifelong 
significance (eg. Barker 1998:13). One of the best examples of the 
programming phenomenon is the permanent change that is induced by 
under-nutrition in early life.  

 
The paper is organised as follows. Section 2 presents the approach that is 
adopted in biographic forecasting. Life is viewed as a sequence of states and 
events. They may pertain to one particular domain of life or to a 
combination of domains such as work and family. A sequence in one domain 
is referred to as a career. Life consists therefore of a set of interdependent 
careers (Elder 1985).  
 Section 3 presents the multistate model. The projection model is an 
extension of the cohort-component model and the model for functional 
population projections. The basic parameters are transition rates and 
transition probabilities. These rates and probabilities must be estimated 
from the data and consequently the model rates/probabilities are equal to 
empirical rates/probabilities. The core of the method is the multistate model 
and regression models that predict rates (or probabilities) of transition. In 
this paper, no distinction is made between the multistate life table model and 
the projection model. We make use of two perspectives on the life table. The 
first is a population perspective: the life table describes the characteristics of 
a stationary population. The second is a life history perspective: the life table 
describes the life history of members of a synthetic cohort, i.e. the cohort 
biography. In traditional projections, the first perspective dominates. The 
life table serves as the source of the parameters of the projection model. In 
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this paper, the life history perspective is followed. Although that perspective 
has been around for decades and the multistate life table has been used to 
describe life histories (eg. Willekens and Rogers 1978), it has not caught on.  
 Section 4 discusses a generic approach to accommodate substantive 
knowledge and causal mechanisms in population forecasting. The approach 
relies on transition rate models and transition probability models and 
follows the perspective on causal analysis adopted by Blossfeld and Rohwer 
(2002).  
 The empirical base for demographic forecasting consists of data of 
various types. Two broad categories are distinguished: data on events and 
data on discrete-time transitions. The multistate life table contains methods 
for estimating transition probabilities from transition rates. Section 5 
describes a method for estimating transition rates from probabilities. It is 
the inverse method, developed by Singer and Spilerman (1979). 
 The central position of transition rates in demographic analysis is also 
illustrated in Section 6. It is asserted that the transition rates are the logical 
parameters to integrate scenario-setting and various types of uncertainty in 
demographic forecasting. The view is held that probabilistic forecasting 
should concentrate on quantifying the uncertainty in transition rates and 
transition probabilities. The transition rates also constitute a bridge 
between the population level and the individual level. At the individual level 
of analysis, e.g. to predict individual biographies, use is made of transition 
rates that depend on individual attributes. At the population level, e.g. to 
forecast cohort biographies, expected values of transition rates across 
individuals are used. The micro-macro link is further described in Section 7. 
 Section 8 presents a brief description of the MicMac project funded by 
the European Commission and implemented by a consortium of research 
centres in Europe. An introduction to the software is also given. Section 9 
concludes the paper. 
 
The Approach: Forecasting Biographies/Life Histories 
 
Generic models of the life course view an individual as a carrier of attributes 
and the life course as sequences of events and states/episodes. Sequences are 
defined in different domains of life and they co-exist, co-evolve and interact. 
A population consists of individuals and the population structure is the 
aggregate effect of individual life courses. For the purpose of analysis and 
projection, a population is stratified in birth cohorts. A cohort may be 
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further stratified by functional state or state of existence. A cohort evolves 
because members make transitions between functional states and eventually 
die. Existing cohorts are replaced by new birth cohorts. Functional 
population projections are projections of state occupancies.  
 Multistate models describe the life course. Age is the main time scale 
used to position life events in time. In its simple form, the multistate model 
describes the collective life history or biography of a cohort and disregards 
intra-cohort variations. The description of the cohort biography is facilitated 
by the multistate life table and extensions of the life table. Multistate models 
have been used for population projection. Examples include LIPRO (Van 
Imhoff and Keilman 1991), MUDEA (Willekens and Drewe 1984), and 
PROFAMY (Zeng Yi et al. 1997). The models are designed to describe and 
project changes in the population composition at the macro level. They 
concentrate on the position individuals occupy in the collective biography at 
consecutive points in time and the population structure that results. They 
do not address the prognosis of events and episodes in the lives of people, 
which is the subject of life course projections. The link between the 
traditional macro-level models and the new micro-level models is the 
multistate life table, and more particularly the occurrence-exposure rate. 
Occurrence-exposure rates are also known as event rates, hazard rates and 
transition rates, depending on the field of study. The occurrence-exposure 
rate bridges the micro-macro gap in population forecasting. The occurrence-
exposure rate may be used to describe the dynamics at the macro-level and 
the transitions at the micro-level. Observed differences between cohort 
members are considered in terms of risk factors and covariates and the risk 
ratios or relative risks associated with different levels of risk factors and 
covariates. Unobserved differences are described by mixture models and 
random effect models. Mixture models classify people in a finite number of 
categories. Random effect models assume a continuous distribution of 
individual differences. 
 The life table underlies both the dynamics at the population level and 
the individual life history. That is consistent with the population and the life 
history perspectives on the life table (see above). The multistate life table 
and the multistate projection model are adequately documented in the 
literature (eg. Roger, 1975; Schoen 1988; Manton and Stallard 1988). In this 
paper, no fundamental distinction is made between the life table and the 
projection model. The life table is viewed as a projection model. 
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 The combination of a hazard model and a multistate life table 
constitutes the main ingredient of the proposed method for functional 
population projections and the prediction of the life course. The combination 
of regression models and life tables was introduced more than thirty years 
ago by Cox (1972) and, for multistate life tables, more than 10 years ago by 
Gill (1992). Both authors give a central position to occurrence-exposure 
rates or transition rates. Many models in demography and epidemiology 
rely on probabilities or on types of rates that differ from occurrence-
exposure rates. The method that allocates a key position to occurrence-
exposure rates is sometimes referred to as the person-years approach. 
 By way of illustration of biographic forecasting, we consider chronic 
diseases. The prognosis of a chronic disease involves the prognosis of the 
occurrence of the disease, the age at onset of the disease, and the number of 
years with the disease. It also involves the identification of the factors that 
increase or reduce likelihood of the disease. Risk factors are among them, 
but also the factors that influence the length of life. The prognosis of a 
disease cannot be separated from a prognosis of the length of life. Figures on 
lifetime risks that are often cited in the media or scholarly literature involve 
statements or assumptions on length of life. To clarify the interdependence, 
the occurrence-exposure is the key. To demonstrate the significance of this 
statement, which may be common knowledge in demography, a reference is 
made to recent discussions in the medical literature. Many studies that 
estimate the probability of an event during a period of a given length or the 
lifetime risk of an event overestimate the probability by an inadequate 
treatment of the competing risks. The matter is at the core of life-course 
forecasting. We consider a few examples. 
 The probability that a person in the Netherlands develops cancer is 45.1 
per cent for males and 30.4 per cent for females, if the person survives to the 
age of 85. The probabilities are conditional on survival to the age of 85. If 
mortality before the age of 85 is taken into account the probabilities of 
developing cancer before the age of 85 is 33.2 per cent for males and 27.8 
per cent for females (Schouten et al. 1994). The first type of probability is 
known as the cumulative incidence (CI), the second is the life table 
probability. As people live longer, the probability of developing cancer will 
increase, even when the age-specific cancer rates do not change. It is the 
composition effect, referred to in the introduction of this paper. More people 
survive to ages when the risk is high. Schouten et al. also estimate that the 
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probability that women in the Netherlands develop breast cancer before the 
age of 85 is 9.4 per cent in the absence of mortality before 85 and 7.9 per 
cent in the presence of mortality. An often-cited figure in the United States 
is a probability of breast cancer of 12.8 per cent. The estimate is from the 
National Cancer Institute (NCI) and is the lifetime probability of breast 
cancer (e.g. National Cancer Institute 2001; Morris et al. 2001). It is based 
on the NCI’s Surveillance Program (SEER) and cancer rates from 1995 
through 1997, and it takes into account that not all women live to older 
ages, when breast cancer risk becomes the greatest (National Cancer 
Institute 2001). Cancers that develop at a higher age are more prevalent 
among population groups that live longer. For instance, the lifetime risk of 
prostate cancer is higher among Whites than Blacks because fewer Blacks 
reach the ages where prostate cancer develops rapidly (Wun et al. 1998:183). 
The lifetime risk of parkinsonism and Parkinson’s disease is only slightly 
higher in men than in women because of the opposite effects of higher 
incidence and higher mortality in men (Elbaz et al. 2002). It is well-known 
that healthy life may increase the lifetime probability of chronic diseases that 
start at higher ages, such as cardiovascular disease and cancer. The greater 
longevity of women is the primary cause of their greater lifetime 
probabilities of congestive heart failure and stroke (Peeters et al. 2002). And 
when the disease occurs, women lose a greater number of years of life than 
men. A final illustration highlights the complex interrelation between 
smoking, cardiovascular disease and mortality. Although smoking is known 
to increase the risk of cardiovascular disease at each age, over a lifetime 
never-smokers have approximately the same risk of cardiovascular disease 
as always smokers, simply because they live longer (Mamun et al. 2002). 
Furthermore, if fewer smokers die from lung cancer, the lifetime risk of 
heart disease among former smokers may rise. It is the association between 
the risk factors and different chronic diseases that underlie the tempo 
distortions of mortality, identified by Bongaarts and Feeney (2002) and 
discussed by Vaupel (2002). It links the tempo distortions to heterogeneity 
and selection.  
 The cumulative incidence or cumulative risk is often used to determine 
the likelihood of a disease. It is the number of new cases during a given 
period (5 years, 10 years, or lifetime) divided by the initial population free of 
a disease (event-free population). The CI is generally not adjusted for the 
presence of competing risks, such as death. It is therefore free of the 
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influence of mortality.2 Formulated differently, it assumes that there is no 
competing risk of death. In the absence of death or another competing event, 
the amount of time at risk is the same for every member of the group and 
members are assumed to live for the entire lifespan. It is a conditional 
probability; conditional on survival. As a consequence, the CI or cumulative 
risk overestimates the risk of developing a disease. The effect of the 
competing risks is taken into account by constructing a multiple decrement 
life table. The life table risk or lifetime risk, as it is often called in 
epidemiology, is lower than the CI. For a discussion, see Schouten et al. 
(1994), Lloyd-Jones et al. (1999), Beiser et al. (2000:1499) and Elbaz et al. 
(2002). Beiser et al. (2000) distinguish an unadjusted cumulative incidence 
(UCI) and an adjusted cumulative incidence (ACI). The UCI overestimates 
the incidence of an event because not all people live till the maximum age. 
The ACI proposed by the authors account for the competing risk of death by 
calculating the CI using the multiple-decrement life table. In the absence of 
a mortality pattern of the study population, the authors suggest using the 
mortality experience of a “standard” population, leading to a standardised 
lifetime risk. This brief discussion of cumulative risks and lifetime risks or 
lifetable probabilities illustrate the importance of competing events in the 
estimation of probabilities. The use of occurrence-exposure rates as defined 
above, is a guarantee for the correct estimation of probabilities. In the field 
of epidemiology, the person-years analysis of incidence rates has been 
described by Breslow and Day (1987). For a detailed recent description in 
the context of the prediction of lifetime incidence, see Beiser et al. (2000). 
Occurrence-exposure rates are used throughout this paper. 
 The illustration demonstrates the types of issues that arise in biographic 
forecasting. Prediction or prognosis of events and experiences, e.g. episodes 
of poverty, unemployment, or impairment, is not common yet in 
demography, but is common in epidemiology, public health, and medical 
practice. In those fields, it is still considered “a complicated business” (De 
Backer and de Bacquer 1999). The probabilities that are estimated from data 
and projected in the future are used by physicians to determine the need for 
intervention or treatment. The probabilities are also used in public health to 
determine public health concerns and to assess the public health and 
financial consequences of the presence of risk factors.  
 Transition rates depend on risk factors and other determinants. A risk 
factor is defined as a factor that is causally related to an outcome. The 
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concept originated in epidemiology, where the identification of the causal 
link is an important element of the etiology of a disease. In many cases, a 
causal link cannot be determined and the association between predictor and 
outcome is a statistical one. In the prediction of the life course, risk factors 
and other factors are evaluated in terms of their predictive performance and 
not their explanatory power. Two comments are warranted here. First, the 
link between a risk factor and the outcome is probabilistic. It means that the 
presence of a risk factor changes (usually increases) the probability of an 
event or the expected duration of an episode. The significance of an event lies 
in the consequences to the life history of an individual (Peeters et al. 2002). 
Second, several risk factors may change during the course of life. Modifiable 
risk factors are particularly relevant in the design of health policies and 
public health programmes. They should also be considered in forecasting 
since the health outcomes (and mortality) depends on the modifiable risk 
factors. For instance, when more people stop smoking and start eating 
healthy, the long-term consequences will be increased survival, possibly 
associated with longer periods of chronic disease. 
 
The Multistate Model  
 
In this section, we derive the multistate model for a sample of m individuals 
born at the same time (same year, say). We adopt a probabilistic perspective 
which has been introduced in multistate demographic modelling by Hoem 
and Jensen (1982),  Namboodiri and Suchindran (1987) and others (eg. 
Chiang 1984). 
 
State Occupancies 
 
Let Yk(x) be a time-varying indicator variable representing the state 
occupied by individual k (k = {1, 2,  …, m}) at age x. Individual k is not 
necessarily a specific person but a combination of attributes. Instead of age, 
we may use another time scale. In that case, x indicates the time elapsed 
since the reference event. The possible states are given by the state space S 
={1, 2, 3, …, I}, with I the size of the state space. The state space includes 
all possible states. If death is considered, it includes the state of dead. Dead 
is an absorbing state and cohort members who die remain in that state. The 
polytomous random variable Yk(x) is a discrete variable that can take on as 
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many non-zero values as there are states in the state space. Yk(x) is zero if 
individual k died before age x.  
 The number of individuals in state i (i = 1, 2, …, I) at age x is denoted 
by  Ni(x). It is equal to 
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where m is the number of individuals in the birth cohort and )(xYk
I is an 

indicator function which is 1 if Yk(x) is i and 0 otherwise. Ni(x) is a random 
variable.  
 A second approach exists to denote the state occupied at a given age. It 
defines a binary random variable Yki(x). It is equal to 1 if individual k is in 
state i at age x and 0 otherwise.  The number of individuals in state i at x is    
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The expected value of Yki(x) is the probability that individual k is in state i 
at age x. It is the state probability. Two types of state probabilities are 
distinguished: unconditional and conditional. The unconditional state 
probability is the probability that cohort member k occupies state i at age x; 
it is denoted by kℓi(x) and 
  kℓi(x) =  E[Yki(x)] = Pr{Yki(x)=1} =  Pr{Yk(x)=i}.  
It is a composite probability that depends on survival. The conditional state 
probability is the probability that cohort member k occupies state i at age x, 
provided k is alive at x. It is denoted by kπi(x). The relation between the two 
probabilities is: kℓi(x) = kℓ+(x) * kπi(x), where kℓ+(x) is the probability that 
cohort member k is alive at age x. If all cohort members are identical, i.e. if 
the cohort is homogeneous, the state probabilities are the same for all 
individuals: kℓi(x) = +ℓi(x) = ℓi(x) for all k and kπi(x) = πi(x) for all k. The 
traditional multistate cohort-component model relies on the homogeneity 
assumption. In the absence of intra-cohort variation, the expected number of 
cohort members in state i at age x is Ki(x) = E[Ni(x)] = Q * ℓi(x) = Q * ℓ+(x) * 

πi(x), with Q the cohort size or radix. This expression is part of the 
traditional multistate life table and is implicit in the multistate cohort-
component model (macro model). If individuals differ in a few characteristics 
only or if a few characteristics suffice to predict the state occupied at age x, 
then kπi(x)= πi(x,Z), where Z represents a specific combination of 
characteristics or covariates. The probability that individual k occupies state 
i at exact age x depends on the covariates only and individuals with the 
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same covariates have the same state probability. Covariates will be 
introduced later. 
 In functional population projections, the state probabilities are estimated 
directly from the data (exogenous) if the static method is adopted and are 
generated by a multistate model (endogenous) if the dynamic method is 
used. Note that the prevalence rates and headship rates in static functional 
population projections are in fact state probabilities. We consider the 
estimation of state probabilities from sample data. Consider a sample of m 
individuals. We do not consider covariates, implying that all individuals are 
identical. Covariates are introduced below. In addition, age is omitted for 
convenience. The number of individuals observed in state i is  
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The probability of observing n1 individuals in state 1, n2 in state 2, n3 in 
state 3, etc., is given by the multinomial distribution  
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where ni is the observed number of individuals in i. πi is the probability that 

an individual is found in state i; it is the expected value of Yi: πi = E[Yi]. The 

restrictions ∑ =1iπ and ∑ ∑ == mnN ii  apply. The most likely values of the 

parameters πi, given the data, are obtained by maximizing the likelihood 
that the model predicts the data, which is the maximum likelihood method. 

The value of πi (i = 1, 2, …, I) that maximizes the above multinomial 

distribution is 
m
ni

i =π̂ . iπ̂  is the estimate of the ?????? 

 The expected (predicted) number of individuals occupying state i is 

[ ] mNE ii π̂= . The variance of Ni is [ ] ( )mNVar iii ππ −= 1 . It is estimated as 

( )mii ππ ˆ1ˆ − . The variance of Yi is Var[πi] = Var[Ni/m] = Var[Ni]/m2 = [πi(1- 

πi)]/m. It is estimated as ( )mii ππ ˆ1ˆ − . The variance declines with increasing 

sample size.  
 The parameters used in demographic projections are frequently based 
on vital statistics or census data and not on sample surveys. For large m, the 

estimate of the state probability πi has low variance, and estimation errors 
may be omitted. That is common practice in population projections. Other 
measurement errors should be considered, however.  
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State Transitions 
 
In this section, we derive expressions for transition probabilities and 
transition rates. First we provide a logical link between state occupancies 
and state transitions. The link is useful since the static method of functional 
population projections focuses on state occupancies whereas the dynamic 
method focuses on state transitions and obtains state occupancies from the 
initial condition and a sequence of state transitions.  
 The state occupied at a given age generally depends on the states 
occupied at previous ages, in addition to personal attributes at the given age 
and prior experiences and conditions captured in the life history. Hence the 
probability of being in state j at age y depends on the states occupied at 
previous ages x1, x2, x3 etc:  Z})Y(x ),Y(x ),Y(x |j  = y)Pr{Y ;( 123  y > xi   i = 1, 2, 3 

where Z denotes contemporary and prior characteristics and experiences. It 
is often assumed that only the most recent state occupancy is relevant 
(denoted by x): 

 Z}Y(x |j  = Y(y)Pr{ = Z})Y(x ),Y(x ),Y(x |j  = Pr{Y(y) ;);123  

If the state occupied at x is i, then 

 y)(xp = i} = Y(x) |j  = {Y(y) ij ,Pr  

pij(x,y) is the probability that an individual who occupies state i at x occupies 
state j at y. It is the discrete-time transition probability. The interval can be 
of any length but is generally one or five years.  
 Transitions may be measured in continuous time and in discrete time. 
The distinction is consistent with the traditional distinction between two 
approaches to microsimulation modeling: continuous-time modeling and 
discrete-time modeling (eg. Galler 1997; O’Donoghue n.d.:13). We first 
consider continuous time. Let kYij(x) be a time-varying indicator variable 
which takes on the value 1 if individual k makes a move from state i to state 
j at exact age x, i.e. in the infinitesimally small interval following x. It is 
zero otherwise. The interval is sufficiently small to exclude multiple 
transitions. During the interval, at most one transition may occur. The 
number of transitions by members of the birth cohort is 

 ∑ =
=

m

k ijkij xYxN
1

)()(  

The expected value of kYij(x) is the probability that individual k makes a 
transition from i to j at age x. It depends on being alive at x and being in i at 
that age. The conditional transition probability is the probability of a move 
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from i to j provided individual k is alive and in state i at age x. It is the 
transition probability: 
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It is the transition probability per unit time for very small intervals. The 
probability that individual k who occupies i at exact age x moves to j at that 

age, kμij(x), is known as the instantaneous rate of transition or transition 
intensity.3 

 The unconditional transition probability is kℓij(x) which may be written 

as  kℓij(x) = kℓi+(x) * kμij(x) = kℓ+(x) * kπi(x) * kμij(x) where the first term is 
the probability of surviving to age x, the second the conditional state 
probability and the third the transition intensity. It is the event rate during 
the infinitesimally small interval following exact age x.  
 If all cohort members are identical, the transition probabilities are the 

same for all individuals: kℓij(x) = ℓij(x) for all k and kμij(x) = μij(x) for all k. 
The traditional multistate cohort-component model (macro model) relies on 
the homogeneity assumption. In the absence of intra-cohort variation, the 
expected number of cohort members making a transition at age x from state 
i to state j is Kij(x) =  E[Nij(x)] = Q * ℓij(x) = Q * ℓ+(x) * πi(x) * μij(x) where Q is 
the cohort size or radix. 

 In some applications, such as migration, the transition intensity μij(x) is 
decomposed into two components: a generation component and a 
distribution component. The generation component is intensity of leaving 
the state of origin (exit rate). The distribution component is the probability 
of a given destination, conditional on leaving the state of origin. The 

transition intensity may be written as μij(x) = μi+(x) * ξij(x) with μi+(x) hte 

instantaneous rate of leaving state i and ξij(x) the probability that an 
individual who leaves state i selects j as the destination.  It is the conditional 
probability of a direct transition from i to j. Direct transition differ from 
discrete-time transitions discussed later in this paper. Direct transitions are 
events while discrete-time transitions refer to states occupancies at two 
points in time. Within an interval, several direct transitions may occur. In 
migration analysis and multiregional demography, direct transitions are 
generally referred to as moves (Rogers et al. 2002). Probabilities of a direct 
transition are estimated in LIFEHIST, a packaged developed by Rajulton at 
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the University of Western Ontario. Note that 
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ξ . Note also that 

the above expression is that of a competing risk model or a transition rate 
model with multiple destinations (Blossfeld and Rohwer 2002). In the 
terminology of competing risks, the first term is the rate of event and the 
second term (destination) indicates the type of event. The separation of the 
transition intensity into two parts is particularly useful when the factors 
that affect the occurrence of an event (movement out of a state of existence) 
differ from the factors that affect the type of event (direction of change or 
destination after the event). In that case the event occurrence and the 

direction of change are two distinct causal processes and μi+(x) and ξij(x) can 
be estimated independently (Hachen 1988:29; Sen and Smith 1995:372). The 
transition rate is studied using a rate model whereas the destination 
probability is studied using a logit or logistic regression model. 
 Transitions may also be measured in discrete time by comparing the 
states occupied at two consecutive ages. Consider the interval between ages 
x and y. Let kYij(x,y) be a time-varying indicator variable which takes on the 
value 1 if individual k occupies state i at exact age x and state j at exact age 
y. It is zero otherwise. State j may be the state of “dead” which is absorbing. 
Note that k refers to any cohort member and is not restricted to cohort 
members occupying state i at x. Below we consider the sub cohort of 
occupants of i at x. 
 The number of discrete-time transitions between origin state i and 
destination state j during the interval from x to y is equal to the (initial) 
number of cohort members (cohort size m) in state i at exact age x and state 
j at exact age y. It is denoted by Nij(x,y). It is 
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kYij(x,y) and Nij(x,y) are random variables. Let  kyij(x,y) be an observation on 

kYij(x,y) and let nij(x,y) denote the observed number of individuals in state i 
at age x and state j at age y: 
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where kyi(x) is 1 if individual k is observed to occupy state i at exact age x 
and 0 otherwise. The probability of observing nij(x,y) cohort members 
occupying state i at exact age x and state j at exact age y for various i and j 
is given by the multinomial distribution provided the transitions are 
independent: 
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where �ij(x,y) is the probability that cohort member occupies i at x and j at 
y with ∑∑ =

i j ij yx 1),(l .  nij(x,y) is the observed number of individuals 

(among the original cohort of m individuals) occupying i at age x and j at 
age y with myxnyxN

i j iji j ij ∑∑∑∑ == ),(),( . The most likely values of the 

parameters �ij(x,y), given the data, are obtained by maximizing the 
likelihood that the model predicts the data. It is the maximum likelihood 
method. The likelihood function is 
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The values of ℓij (i,j = 1, 2, …, I) that maximize the above multinomial 

distribution is 
m

yxn
yx ij

ij

),(
),(ˆ =l . The quantity ),(ˆ yxijl is the estimate of the 

probability that a cohort member occupies state i at age x and state j at age 

y, which is the expected value of Yij(x,y): ℓij(x,y) = E[Yij(x,y)]. Note that 

ℓij(x,y) is an unconditional probability since it relates to an initial cohort 
member. 
 The population is usually stratified by age and the base population is the 
number of cohort members surviving to exact age x. In that case, m is 
replaced by m(x) and the transition probability is the (conditional) 
probability that a cohort member surviving at age x occupies state i at age x 
and state j at age y. It is the probability that any person of age x occupies 
state j at age y, irrespective of the state occupied at x. In multistate 
demography, this is known as a population-based life-table measure 
(Willekens 1987:136ff). The transitions may be conditioned, not only on 
survival, but also on the state occupied at age x. It is a status-based life-table 

measure and is denoted by πj¦i(x,y) and it is the probability that a cohort 
member of age x (i.e. surviving at age x) and occupying state i, will be in j at 
age y. The probability will be denoted by pij(x,y). The probability of a given 
observed set of transitions is 
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The above equation represents the competing risks model or multiple 
destination model (eg. Blossfeld and Rohwer 2002).  
 
Transition Intensities, Rates and Probabilities 
 
The probability that individual k in i transfers to j during an infinitesimally 
small interval following x is the instantaneous rate of transition: 
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μ       for i not equal to j. 

 In this section, we assume that all cohort members are identical. 
Within-cohort variation is absent. The instantaneous rate of transition is 
also known as the transition intensity and the force of transition. The term 

μii(x) is defined such that ∑ =
j
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 The quantity μii(x) is non-negative. The quantity μii(x) is sometimes 
referred to as the intensity of passage because it relates to the transition 
from i to any other state different from i (eg. Namboodiri and Suchindran 
1987:38). Schoen (1988:65) refers to it as the “force of retention. 
 The intensities are the basic parameters of a continuous-time multistate 
process. Under the restrictive Markov assumption, the probability that an 
individual leaves a state depends only on the state. It is independent of other 
characteristics. In this paper, the transition probability also depends on age. 

 The matrix of instantaneous rates with off-diagonal elements -μij(x)  and 

with μii(x) on the diagonal is known as the generator of the stochastic 

process {Yk(x); x ≥ 0} (Çinlar 1975:256). The matrix is denoted by μ(x). It 
has the following configuration: 

  
In multistate demographic models, the diagonal also includes death rates 
and emigration rates: 
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where μid(x) is the mortality rate at age x in state i, and μio(x) the 
instantaneous rate of leaving state i to outside of the system.  
 Note that 
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The matrix of discrete-time transition probabilities is:  

 

and P(x,y) = I.  
 

An element of P(x,y), pij(x,y), denotes the (conditional) probability that an 
individual who is in state i at exact age x is in state j at exact age y. The 

Markovian assumption implies the following relationship between P(x,x+ν) 

and P(x+ν,y):  

 P(x,y)= P(x,x+ν)*P(x+ν,y)            x < x + ν < y 

Subtraction of P(x+ν,y) from both sides of the equation yields 
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 Multiplying both sides with the vector of state probabilities at age x, 
P(x), leads to: 
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where P(x) is a vector of state probabilities. 
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 The model is a system of differential equations. In multistate 
demography, two avenues are followed to solve the system. Both introduce 
age intervals (Rogers and Willekens 1986:370ff). The first avenue postulates 

a piecewise constant intensity function, μ(t) =μ(x) in the interval from x to y 

(x ≤ t < y). This implies an exponential distribution of demographic events 
within each age interval. The model that results is referred to as the 
exponential model. The second avenue postulates a piecewise linear survival 
function. A piecewise linear survival function is obtained when demographic 
events are uniformly distributed within the age intervals. The model that 
results  is  referred to as  the linear  model.  The first avenue is  followed  by  

 
Van Imhoff (1990) and Van Imhoff and Keilman (1991) among others; the 
second by Willekens and Drewe (1984) among others. The state occupancies 
and the sojourn times must be estimated simultaneously from the population 
at the beginning of the interval and the events during the interval. 
 To solve the system of differential equations, it may be replaced by a 
system of integral equations: 
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 To derive an expression involving transition rates, we write 
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where M(x,y) is the matrix, with elements mij(x,y), of average transition 

rates during the interval from x to y and ∫
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sojourn time spent in each state between ages x and y per person in each 
state at age x.  
 

i. Exponential model 
 

The transition intensities μ(x) are assumed to remain constant during the 
age interval from x to y and to be equal to the model transition rates M(x,y). 
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It is furthermore assumed that they are can be estimated by empirical 
occurrence-exposure rates for that age interval. This assumption is 
consistent with the general assumption in demography that life-table rates 
are equal to empirical rates. In this paper no separate notation is used for 
model rates and empirical rates. The matrix of transition probabilities 
between x and y is 

 
 

where M(x,y) is the matrix of empirical occurrence-exposure rates or 

transition rates for the age interval from x to y and μij(t) = mij(x,y) for  x ≤ t 
<y and �(t) = M(x,y) for x ≤ t < y.  
 A number of methods exists to determine the value of exp[-M] (eg. 
Director and Rohrer 1972:431ff; Aoki 1976:387; Strang 1980:206). We use 
the Taylor series expansion. Note that for matrix A, exp(A) may be written 
as a Taylor series expansion 
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(see also Schoen 1988:72).  
 
The transition rates M(x,y) are estimated from the data. The transition rate 
mij(x,y) is equal to the ratio of the number of moves or direct transitions 
from i to j during the interval from x to y, and the duration of exposure 
spent in the state of origin i: 
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where nij(x,y) is the observed number of moves from i to j during the 
interval and Li(x,y) is the duration in i exposed to the risk of moving to j. It 
is the sojourn time in i during the (x,y) interval. Exposure is measured in 
person-months or person-years. In case of two states, the rate equation may 
be written as follows: 
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where m11(x,y) = m12(x,y) and m22(x,y)=m21(x,y). In multistate demography, 
the state of dead is gererally not treated as a separate state and the death 
rate is included in the diagional elements, e.g. n11(x,y) = m12(x,y)+m1d(x,y) 

[ ]),()(exp),( yxxyyx MP −−=
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where m1d(x,y) is the number of deaths among cohort members occupying 
state 1 and aged x to y.  

In matrix notation: [ ] 1),(),(),( −= yxyxyx LnM  

 Let ),( yxL  be the vector of sojourn times containing the diagonal 

elements of L(x,y) and let K(x) be a vector with the state occupancies at age 
x by surviving cohort members as its elements: 
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with Ki(x) the number of cohort members in state i at exact age x. The 
vector of sojourn times by all cohort members in the various positions is 
obtained by the following equation: 
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 Since the transition intensities are constant in the interval from x to y, 
the equation may be written as follows: 
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Integration yields 

 [ ] [ ] xyyxtyx −− −−
0

1 ),(exp),( MM   which is equal to  

 [ ] [ ][ ]),()(exp),( 1 yxxyyx MIM −−−−  

 Hence the sojourn times in the various states during the (x,y)-interval 
are given by: 
 [ ] [ ][ ] )(),()(exp),(),( 1 xyxxyyxyx KMIML −−−= −  

 
ii. Linear model 
 

 To solve equation (1), one may introduce an approximation of L(x,y). A 

simple approximation is that P(x,x+t) is linear on the interval x ≤ x+t < y. 

Hence ∫
−
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),(),( PL may be approximated by a linear integration: 
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 The linear approximation implying the assumption that the events are 
uniformly distributed over the interval is adequate when the transition rates 
are small or the interval is short. It can be shown that the linear model is an 
approximation to the exponential model that retains the first three terms of 
the Taylor series expansion (Annex I).  
 In the previous section we described the separation of the origin-
destination specific transition rate into two components, a generation 
component and a distribution component. The discrete-time transition 
probabilities are related to the probabilities of direct transition in an 
interesting way. The off-diagonal elements of M(x,y) may be replaced by –

mi+(x,y) ξij(x,y) where mi+(x,y) is the rate of leaving i (exit rate), which is 
assumed to be constant in the interval from x to y. The diagonal elements 

are mi+(x,y). The μ-matrix may be written as 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

y)(x,..00
.....
.....
0..y)(x,0

0..0y)(x,

y)(x,..y)(x,y)(x,
.....
.....

y)(x,..y)(x,y)(x,

y)(x,..y)(x,y)(x,

y)(x,..y)(x,y)(x,
.....
.....

y)(x,..y)(x,y)(x,

y)(x,..y)(x,y)(x,

 

 

 
 

 --

- -
-- 

 --

- -
-- 

I

2

1

II2I1I

I22212

I12111

II2I1I

I22212

I12111

μ

μ
μ

ξξξ

ξξξ
ξξξ

μμμ

μμμ
μμμ

 

with ξ(x,y) the probability of at least one direct transition from i to j during 
the interval from x to y. 

 
Population Projection 
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The distribution of a population of a given age at a given point in time is 
represented by the vector of state occupancies K(x,t) 
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where Ki(x,t) is the number of persons of age x in state i at time t.  
 In this section we consider a projection model that allows for 
international migration. The number of people at a given age above 0 
depends on an initial condition, deaths, interstate transitions, emigrations 
during an interval and immigrants during an interval. 
 

i. Exponential model 
 
The exponential model of multistate population growth is derived from a 
system of differential equations 
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mIFKMK
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where K(t) is a vector of state occupancies, i.e. the number of individuals in 
the various states, Im(t) is the vector of immigrants at time t by state of 
existence, and M(t) and F(t) are coefficient matrices. We consider the age 
interval from x to y and introduce piecewise constant rates M(x,y). The 
projection model expresses the state occupancies of the cohort members at 
age y in terms of the state occupancies at age x and the transition rates 
during the interval from x to y. The solution to the system of differential 
equations is 
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 Since the instantaneous rates are assumed constant in the interval (x,y) 
and if immigration Im is uniformly distributed then 
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 G(x,y) represents the contribution of cohort members present at age x 
to the population at age y and F(x,y) represents the contribution of 
immigrants aged x to y.  
 

ii. Linear model 
 

The multistate projection model predicts the state occupancies from 
information on state occupancies at a previous point in time and 
immigration: 

 myxxyxy IFKPK ),()(),()( +=  

where P(x,t) is the matrix of transition probabilities for persons aged x, and 
Im is a vector representing the number of immigrants during a unit interval. 
F(x,y) is the coefficient matrix that denotes the contribution of immigrants 
during a given period to the population at the end of the period. The 
coefficient matrices are related to the transition rates (Willekens 1998): 
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Transition Probability Models and Transition Rate Models 
in Population Forecasting 
 
Now we introduce covariates, including contextual variables. Covariates 
may be introduced in two ways: by stratifying the population by the relevant 
covariate(s), provided the covariates are discrete variables, or by a 
regression equation. In population projections, stratification is generally 
used. For instance, a population is usually stratified by sex and birth cohort 
(age) and demographic parameters are sex- and birth cohort-specific. 
Regression models are more economic at a cost of precision. Stratification 
involves as many parameters as there are cells in the cross-classification of 
covariates. The same is true only in a saturated regression model, which is a 
model that has as many independent parameters as there are unknowns 
(cells in the cross-classification). A saturated regression model involves 
several interaction effects, which may be redundant in most practical 
applications.  
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 In the regression model, the covariates are denoted by Z (Z = {Z1, Z2, 
Z3, …}). A covariate Zp may represent a single attribute or a combination of 
attributes (to denote interaction effects).  In addition to covariates one may 
include time (when the rates are time-varying) and/or cohort (when rates 
are estimated for different cohorts) among the explanatory variables or 
predictors. Furthermore, the transition rates may depend on the entire 

previous life course: M(x,Θ[0,x]) where Θ [0,x] represents the life course 
from birth to age x. We consider state probabilities and transition rates. 
State probabilities are related to covariates using a logit model or logistic 
regression. Transition rates are related to covariates using transition rate 
models that are related to the family of Poisson regression models. Logit 
models are also applied to link transition probabilities to covariates. 
 

iii. State probabilities 
The state probability at age x, πi(x,Z), is the probability that an individual 
of age x and with covariates Z occupies state i. The logit equation relates 
the state probabilities to covariates.  
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π is the odds that a cohort member of age x occupies state i 

rather than the reference state r (reference category). The logit 
transformation assures that the state probabilities lie between 0 and 1, and 

that their sum is equal to one. The value of ηi may range from -∞ to +∞, but 

the value of πi stays within 0 and 1. To obtain the probabilities, the logit 
scale is converted into the probability scale:  
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where the 1 is associated with the reference category. The model is the 
multinomial logistic regression model. 
 

iv. Transition rates 
 
The transition rates may depend on time [μij(x,t)] and may also depend on 
personal characteristics. For instance M(x,Z) is the matrix of transition 
rates for individuals of age x and the vector of background variables Z (Z = 
{Z1, Z2, Z3, …}). The dependence of transition rates on personal attributes 
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and other explanatory variables is described by transition rate models, 
better known as hazard models (Tuma and Hannan 1984; Blossfeld and 
Rohwer 2002). These models are Poisson regression models. Transition rate 
models include the basic (exponential) transition rate model, the piecewise 
constant rate model, and the Cox regression model. Transition rate models 
also include parametric model of time- (or age-)dependence such as the 
Gompertz model, the Weibull model, the Coale-McNeil model (for fertility 
and nuptiality), the Heligman-Pollard model (for mortality) and the Rogers-
Castro model (for migration). Transition rate models are estimated from 
empirical data. The data may be vital statistics, census data or surveys. The 
estimation of transition rates from survey data require recently developed 
theories of statistical inference.  
 The basic parameters of the multistate model are the transition rates 
mij(x,y). As described in a previous section, the transition rate may be 
written as the product of an exit rate mi(x,y) and a conditional transition 
probability. The exit rate is modeled using a transition rate model for a 
single event (leaving the state of origin). The elementary transition rate 
model is the basic exponential model, with the rate being independent of age 
(Blossfeld and Rohwer 2002). The regression model linking an exit rate to 
covariates is 

 [ ]...exp 22110 +++= ZZm iiii βββ  

and a regression model linking transition rates to covariates is 
 [ ]...exp 22110 +++= ZZm ijijijij βββ  

The models may be written as log-linear models 

 ...ln 22110 +++= ZZm iiii βββ  

 ...ln 22110 +++= ZZm ijijijij βββ  

The transition rate is the ratio of number of events over total exposure time. 
These two components may be studied separately, as is done in the log-rate 
model (eg. Yamaguchi 1991:Chapter 4). It that model, it is assumed that 
changes in the number and timing of direct transitions (events) do not 
significantly affect the total exposure time. The assumption is realistic when 
exposure time is large compared to the number of transitions. If a variation 
in number or timing of transitions does not affect total exposure, the latter 
component may be considered fixed and may be treated as an offset in 
probability models including regression models. The problem of modeling 
transitions reduces to the prediction of the number of events (counts) which 
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is the numerator of the transition rate. The number of direct transitions that 
occur during a unit interval is often represented by a Poisson random 
variable. The number of events that may occur during the interval is not 
restricted in any way. Subjects in a (sample) population may experience 
more than one event during the unit interval. The Poisson model is 

 ]exp[- 
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  }n  Pr{ ijijij λ
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where Nij denotes the number of transitions from i to j, nij is the observed 

number of transitions, and λij is the expected number of transitions. The 
latter is the parameter of the Poisson model. It is assumed that the 
transitions are independent. The parameter may be made dependent on 
covariates: 
 [ ] [ ]...exp 22110 +++== ZZNE ijijijijij βββλ  

The model may be written as a log-linear model:  
 ...ln 22110 +++= ZZ ijijijij βββλ  

 In principle, Zp can be any covariate. In conventional log-linear analysis, 
all covariates are discrete or categorical. The observations on transitions 
may therefore by arranged in a contingency table. The covariates refer to 
rows, columns, layers and combinations of these (to represent interaction 
effects).  
 The log-rate model is a log-linear model with an offset: 
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where PYi denotes exposure time in state i (origin state). Since PYi is fixed, 
the equation may be rewritten as follows: 
 [ ] [ ]...exp 22110 +++== ZZPYNE ijijijiijij βββλ  

The age dependence may be introduced in two ways: non-parametric and 
parametric. In the first approach, the population is stratified by age and a 
transition rate is estimated for each age separately. In the parametric 
approach, age dependence is represented by a model. A common model is 
the Gompertz model, which imposes onto the transition rate an exponential 
change with duration. The Gompertz model has two parameters and each 
may be made dependent on covariates (For a detailed treatment, see 
Blossfeld and Rohwer 2002). Other parametric models of duration 
dependence may be used. In studies of marriage and fertility, the Coale-
McNeil model is often used to describe the age dependence of the marriage 
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or first birth rate (eg. Liang 2000). In migration studies, the model 
migration schedule is a common representation of the age dependence of the 
migration rate (eg. Rogers and Castro 1986). Each parameter of the model 
may be related to covariates. In practice, only one or a selection of 
parameters is assumed to depend on covariates.4  
In some cases, the researcher is not interested in the age dependence of 
transition rates, but in the effect of covariates on the level of transition. 
Rather than omitting age altogether, as in the basic exponential model, the 
transition rate is allowed to vary with age but the effect of the covariates on 
the transition rate does not vary with age. The transition rate model that 
results is a Cox proportional hazard model. It is written as 
 [ ]...exp)()( 22110 +++= ZZxmxm ijijijijoij βββ  

where mijo(x) is the baseline hazard. It is the set of age-specific transition 
rates for the reference category. Note that if the age dependence (age 
structure) of transition is independent of the dependence on covariates 
(motivational structure), the baseline hazard may be represented by a 
parametric model and the two components may be estimated separately.  
 
From Transition Probabilities to Transition Rates 
 
In this section, we assume that transition is measured in discrete-time. 
Examples include the census (based on the residence at time of census and 5 
years prior to the census). From that information, the approximate 
transition rates can be derived. The problem is equivalent to one in which 
we are given P(x,y) and M(x,y) is required. The derivation starts with the 
exponential expression [ ]),()(exp),( yxxyyx MP −−= . The exponential 

expression may be approximated by the linear model: 

[ ] [ ]y)(x,y)(x,  y)(x, 2
11

2
1 MIMIP −+= −  

The approximation is adequate when the transition rates are small or the 
interval is short.  
 The derivation of the rate of transition during an interval from 
information in regions of residence at two consecutive points in time is 
known as the inverse problem: transition rates are derived from transition 
probabilities (Singer and Spilerman 1979).  

[ ][ ] 1
2 ),(),(),( −− +−= yxyxyx xy PIPIM , 
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provided [ ] 1),( −+ yxPI exists. The inverse relation may be used to infer 

transition probabilities for intervals that are different from the measurement 
intervals. For instance, if the states occupied are recorded at age x and at 
age y, the inverse relation may be used to infer the average transition rates 
M(x,y) and to derive the transition probabilities over a one-year period. The 
expression is [ ]),(exp)1,( yxxx MP −=+  where M(x,y) is estimated from P(x,y) 

using the inverse method. The method assumes that transition rates are 
constant during the (x,y)-interval and that the linearity assumption is an 
adequate approximation of the exponential model. 
 
Transition Rates: The Bridge to Demographic Scenarios 
and Stochastic Projections 
 
The transition rates (or in some cases the transition probabilities) also 
represent the ultimate scenario variables. Scenarios are often formulated in 
terms of demographic indicators such as life expectancy and TFR, but these 
measures must be translated into age (and sex) specific transition rates. 
Scenarios may be expressed directly in terms of the transition rates or in 
terms of the covariates that predict the transition rates. For instance, if one 
is interested in future pension payments, the age at retirement may be 
considered a scenario variable or it may be predicted by a transition rate 
model with the rate of retirement depending on a set of personal attributes 
and policy variables.  
 The transition rates (or transition probabilities) also constitute the 
ultimate variables for stochastic projection. Predicted values of demographic 
indicators such as life expectancy or TFR (predicted by expert opinions, a 
mathematical model extrapolating past values and errors, or a combination) 
must be translated into age (and sex) specific transition rates. Stochastic 
projections are based on the assumption that the transition rates are not 
point estimates but interval estimates following particular probability 
distributions around mean or expected values (e.g. normal distribution or 
beta distribution). A two-step procedure involving the random selection of 
values from a distribution and the projection of the population using these 
values constitutes a simulation experiment. Repeated simulation 
experiments produce information on the distribution of target variables such 
as the population aged 65+, the dependency ratio, the number of years spent 
in pension and the number of years with severe disability. 
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 The coefficients of the regression models predicting the transition rates 
or transition probabilities may also vary in time or over individuals with the 
same attributes. In that case the model with fixed effects (fixed effects 
model) changes into a varying effect model (which includes as a special case 
the random effects model that describes the distribution of effects of 
covariates among a group of people with the same attributes). The model 
may become very complex and may be manageable only in a micro-
simulation mode. 
 
Individual Biographies and Microsimulation 
 
The multistate model is also the basis for the prediction of individual 
biographies. In the previous sections, an individual was represented by k. To 
project k’s biography, information on the attributes of k, on other 
explanatory variables and maybe some assumptions about patterns of 
change are used to determine for each age the transition rate experienced by 
k. Transition rates are predicted from explanatory variables using a 
regression model (transition rate model). The technique is used extensively 
in medical sciences (eg. Anderson et al. 1990; Mamun 2004). The method is 
also related to micro-econometric models of labour market dynamics (eg. 
Flinn and Heckman 1982a; 1982b).  
 The multistate model specified above is a macro-simulation model that 
uses point estimates of the transition rates and predicts expected values, e.g. 
the expected number of individuals in a given state at a given future time. 
The transition rates may depend on covariates, eg. sex. The expected value 
is the mean value in a population of individuals. Individual values, e.g. states 
occupied by individuals in a population at a given future point in time, are 
obtained by randomly allocating events (transitions) to members of the 
population in a way that is consistent with (a) the point estimates of the 
transition rates (mean or expected value) (prior estimate) and (b) the 
distribution of the individual values around the mean. It implies that the 
transition rates follow a given probability distribution. Individual values are 
generally not produced for all members of a population but for a (random) 
sample. Using a random number generator, a unique value is selected from a 
distribution for each individual in the sample population. If for a given 
individual, the value is less than the mean value in the population (point 
estimate), the event is allocated to the individual and the individual makes 
the transition from the state of origin to the state of destination. If the value 
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drawn from the distribution exceeds the mean value, the individual remains 
in the state of origin. The transition rates that result after the events have 
been allocated to the sample population (posterior estimates) generally differ 
slightly from the prior estimates. The reason is sample variation. If the 
sample is sufficiently large, the posterior estimates coincide with the prior 
estimates. That is why microsimulations require large sample populations to 
produce reliable estimatesfor the population characteristics. 
 Wolf (2000) views microsimulation as the generation of data. He sees 
microsimulation fundamentally as an exercise in sampling: “Microsimulation 
consists of drawing a sample of realizations of a prespecified stochastic 
process” (Wolf 2000:2). The same view is adopted in the MicMac project. 
The data consists of realizations of an underlying probability mechanism. 
Probability models constitute the core of microsimulation and predictions 
generated by the probability models represent the output of 
microsimulation. Wolf also observed that the emphasis in most 
microsimulation is on the outputs generated by the simulation, rather than 
on the process of model development, estimation, and assessment. He argues 
that microsimulation has much to offer in these modeling steps. The 
MicMac project is an exercise in model development, estimation and 
assessment. The estimation of model parameters (transition rates in 
continuous-time models and transition probabilities in discrete-time models) 
from data uses the theory of statistical inference when required, i.e. when 
sampling is involved.  
 
The MicMac Project 
 
The Partners and the Work Packages 
 
The biographic projection model is developed and implemented by a 
consortium of research institutes in Europe. The following institutes 
participate (coordinator in parentheses): NIDI in The Hague (Nicole van der 
Gaag), IIASA and Vienna Institute of Demography (VID) (Wolfgang Lutz), 
Bocconi University in Milan (Francesco Billari), Department of Public 
Health, Erasmus Medical Center in Rotterdam (Wilma Nusselder), Max 
Planck Institute for Demographic Research in Rostock (Gabrielle 
Doblhammer-Reiter), INED in Paris (Laurant Toulemon). General 
coordination is by the author. Model development is concentrated at NIDI. 
IIASA will develop methods and procedures to efficiently derive 
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scientifically sound argument-based expert views on future trends of 
demographic variables utilising insights from the fields of cognitive science, 
group dynamics and quantitative decision analysis.  Other partners will use 
the instruments developed at IIASA to produce argument-based scenarios 
and develop uncertainty distributions around most likely values of 
demographic parameters of multistate models. 
 The Erasmus Medical Center, in cooperation with the Max Planck 
Institute for Demographic Research, will determine the age (risk) profiles of 
key events in morbidity and mortality in the life course and determine the 
relative risks of these events in relation to proximate risk factors (e.g. 
smoking, blood pressure, body mass index) and to more distant 
determinants such as socio-economic status (SES.) This will serve as input 
for the illustrative projections using the MicMac micro-simulation 
approach. In addition they will develop mortality and morbidity scenarios 
using the instruments for argument-based scenarios developed at IIASA. 
 Bocconi University, in cooperation with VID and INED will provide the 
input needed to make forecasts on fertility and family and household 
structure. In addition, argument-based scenarios will be developed. 
 Both the macro-model (Mac) and the micro-model (Mic) project 
biographies in terms of state occupancies and transitions. Mac projects 
cohort biographies. It projects the (expected) number of members of a birth 
cohort that occupy various states at a future date. It uses mean or expected 
values of transition rates and transition probabilities. Mic projects individual 
biographies. It predicts the state occupied by a given individual at a given 
future point in time. To project individual biographies, Mic uses information 
on the attributes of the individual, on other explanatory variables and maybe 
some assumptions about patterns of change to determine for each age the 
transition rate experienced by the individual. The transition rates are 
predicted from explanatory variables using a regression model (transition 
rate model).  
 VID will also prepare multi-state population projections by level of 
education. This research will deliver to all other components of MicMac a 
substantive contribution about changes in the educational composition of 
the total population (with special emphasis on the working age population). 
It will define alternative scenarios about future transition rates considering 
ongoing plans for school reforms and it will cover the analysis of 
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interactions between education and the timing of fertility over the life 
course. 
 
Software Development 
 
A number of software packages for demographic projection already exist 
(Willekens and Hakkert 1992; http://www.eat.org.mx/software/ 
softpyd.htm for an update). Packages that implement the cohort- component 
method include PDPM/PC (Population and Development Projection 
Methods for Microcomputers), developed under auspices of the United 
Nations, and PEOPLE, developed by Richard Leete, for national and 
subnational population projections.  
 Packages for multistate demographic modelling have been developed 
largely as part of methodological research. The first packages were 
developed at IIASA in the 1970s by Ledent and Willekens (SPA by 
Willekens and Roger, 1978; LIFEINDEC by Willekens 1979). They 
included the multistate life table and multistate projections. The work was 
carried further at NIDI. That resulted in LIPRO by Van Imhoff and 
Keilman (1992), FAMY by Zeng Yi (1991), PROFAMY by Zeng Yi (Zeng 
Yi et al. 1997) and MUDEA by Willekens (Willekens and Drewe 1984; 
Willekens 1995). LIPRO was originally developed for multistate household 
projection but has been designed as to be generally applicable. It is user-
friendly and has been applied in several countries of Europe. At IIASA the 
first interactive user-friendly software for multistate population projections 
- DIALOG (Scherbov et al. 1986) was developed by Scherbov. 
 Software for stochastic population projections is not generally available. 
PEP (Program for Error Propagation) developed by Alho (n.d.) is not 
generally accessible but has been extensively documented. It is used in the 
DEMWEL project in the Fifth Framework Programme of the European 
Commission. The manual is available on the internet: http://joyx.joensuu.fi 
/~ek/pep/userpep.htm 
 Dynamic longitudinal microsimulation models simulate life histories of 
individuals and families. Macro-simulation models, such as demographic 
projection models, deal with individuals grouped by concerned attributes, 
for instance a group of persons of the same age and parity and/or marital 
status. Micro-simulation models simulate life course events and keep 
detailed records of demographic status transitions for each individual of the 
sample population. The models trace the influence of a large number of 
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decisions or events on the life course of people. Microsimulation models that 
are designed to simulate life histories adopt a life course perspective and 
involve behavioural rules that determine the occurrence of events and ages 
at events. Dynamic longitudinal microsimulation models have been the 
subject of extensive reviews (Van Imhoff and Post 1998). Recent reviews 
were presented at the Dynamic Microsimulation Modelling Technical Workshop, 
held in January 2002 at the London School of Economics 
(http://www.lse.ac.uk/ Depts/sage/conference/workshop.htm) and at the 
International Micro-simulation Conference on Population Ageing and Health: 
Modelling Our Future, held in Canberra, Australia in December 2003. Among 
the microsimulation models, SOCSIM, developed at the University of 
California at Berkeley, is one of the oldest but continuously updated models, 
and LifePaths of Statistics Canada is one of the best known. The latter has 
inspired the development of microsimulation models in several countries. 
Other models are SABRE in the UK, DESTINIE in France, NATSIM in 
Australia, SWITCH in Ireland and MOSART in Norway. MicMac differs 
from these models in the special interest in micro-macro linkages. 
 As part of the MicMac project, a user-friendly software package will be 
developed for biographic forecasting (cohort biographies and individual 
biographies). Biographic projections provide a generic approach to 
functional population projections. The software implementing Mac includes 
a facility to link the rates/probabilities to explanatory variables using rate 
models or probability models (regression models). The link is 
operationalized in a separate module that can be activated by the user.  
 The software will be object-oriented. Three broad objects are 
distinguished: a pre-processor to produce the data base for projection 
(input), the processor that represents the projection engine and stores the 
results in a data base (output), and the post-processor to process the 
projection results. At a more specific level, objects refer to algorithms or 
procedures to obtain particular estimates or predictions, to determine 
prediction error, to impose empirical regularities (e.g. using model 
schedules), to calculate summary indicators, etc. The individual objects will 
be documented and assembled in an object library. That approach enables 
and simplifies the further development of MicMac after the project is 
completed (by persons not involved in the initial development). It is an 
important strategy towards sustainability.  
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What Does the Project Contribute? 
 
The proposed project signifies a step change in projection methodology. It 
specifically adds the following: 

1. The multistate cohort-component model will be extended to project 
cohort biographies covering a number of domains of life (e.g health, 
family and education) that constitutes the basis for integrated 
demographic projections involving a number of domains of life. 

2. The multistate cohort-component model will be extended to project 
individual biographies. This represents a scientifically sound strategy 
towards disaggregated demographic projections that cover several 
domains of life and that consider detailed characteristics of the 
population.  

3. Uncertainty will be dealt with in an innovative way, using recent 
findings from cognitive science and the study of group dynamics. In 
addition, uncertainty will be measured at the level of demographic 
events. That level is appropriate since demographic forecasting errors 
are caused by errors in predicting births, deaths and other 
demographic events. An important advantage of this approach is that 
it will be easier to communicate the results of stochastic projections to 
policy makers and the general public. 

4. For the first time ever, demographic projection models will be 
available that take advantage of the important advances during past 
decades in the statistical analysis of lifetime data and event histories. 
That development concentrated on the explanation of transition rates 
(hazard rates) and transition probabilities. 

5. For the first time ever, a generic software package will become 
available to explore demographic futures of Europe that cover detailed 
population categories. Although the software will be presented as a 
easy-to-use package, it has a modular structure and consists of a large 
number of objects. The availability of an object library will enhance 
the further development of MicMac and other demographic software 
that may use these objects. 

6. MicMac will be readily applicable to investigate the impact of lifestyle 
factors and other major health determinants on specific chronic 
diseases and the health status in general, and to assess the effects of 
different types of interventions on the health status of different groups 
in the population. What differentiates the proposed methodology from 
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other projection and impact assessment methods is (1) the focus on 
incidence (transitions) rather than prevalence and (2) the correct 
treatment of the effects of competing risks by adopting a multistate 
setting. 

 
Conclusion 
 
Biographic forecasting is a new approach to demographic forecasting that 
integrates traditional forecasting of the population by age and sex and 
functional population forecasting. Demographic change is increasingly 
difficult to forecast because the idiosyncratic nature of demographic 
behaviour. Family formation, migration and attempts to grow old healthy 
are part of a lifestyle that also includes work and other domains of life. The 
interest in life strategies originates from the awareness that critical 
decisions in life, i.e. decisions related to life events, are not taken in isolation 
but are based on lessons learned from past experiences (antecedents) and 
general conceptions about future developments in different life domains. 
Increasingly, demographic events are embedded in a life plan. The 
individual programming of life events, viewed by Légaré and Marcil-
Gratton (1990) as a challenge for demographers in the twenty-first century, 
may be situated within the broader context of the individual design and 
implementation of life strategies. The second demographic transition, with 
its emphasis on choice biographies and changing interpersonal relationships, 
may also be viewed as a consequence of individualization and the emergence 
of individual life strategies.  
 The new demographic regime characterized by choice biographies and 
life planning raises new challenges for demographic forecasters. Traditional 
projections by age and sex do not adequately capture the complexity of life. 
As a result the uncertainty increases. Probabilistic projections quantify the 
uncertainty but are not able to reduce the uncertainty. Reduction of 
uncertainty and increase of forecasting performance require more realistic 
projection models, i.e. models that are better able to integrate substantive 
knowledge and to capture the causal links that underlie childbirth, death, 
migration and the other events that shape the lives of people. This new 
generation of models consists of transition models or multistate models that 
capture transitions people make in life and the developmental processes and 
pathways that characterize individual lives. The multistate life table and the 
multistate projection model, combined with regression models of transition 
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rates, are adequate candidates for the development of a new generation of 
demographic projection models. Cox’s (1972) paper on regression models 
for life tables caused a revolution in survival analysis. The emerging 
discipline of survival analysis was provided with tools it needed for studying 
the effects of prognostic factors on individual survival in clinical trials 
designed to evaluate new cancer therapies. The model became a central 
research tool. The paper by Gill (1992) on regression models for multistate 
life tables went largely unnoticed although it showed that the Cox model 
and the associated techniques of statistical inference can be immediately 
applied to studying transitions in multistate demographic models. It is time 
to move away from narrow perspectives in demographic forecasting and to 
broaden the perspective by bridging micro- and macro-level analysis and by 
effectively integrating substantive knowledge and statistical perspectives 
and techniques into demographic modeling. The life course provides the 
logical framework, from a substantive and an analytical perspective. 
Techniques of statistical inference may be used to obtain parameters of 
projection models from observational data to complement vital statistics and 
census data and to provide for a richer empirical basis for demographic 
forecasts. 

 
Acknowledgement 
 
I would like to thank Nico Keilman for his comments on an earlier draft of this 
paper.  
 
Notes 
 
1. The concept of cohort biography was introduced by Ryder (1965). 
 
2. In  demography, this condition is referred to as the “pure state”. 
 
3. The intensity is a conditional probability of a move during a small interval: 

x
iIxXjJxxXxPxij Δ

=≥=Δ+>≤
=

),¦,(lim)(λ  where X, I and J are random variables 

denoting age, state of origin and state of destination, respectively. 
 
4. TDA (Transition Data Analysis) has a facility for user-defined rate models 

(Rohwer and Pötter, 1999, Section 6.17.5). The programme may be downloaded 
from prof. Rohwer’s homepage: http://www.stat.ruhr-uni-bochum.de/ The 
manual (extensive) can be downloaded from the same site. Willekens (2002) has 
written a brief introduction to TDA with examples. 
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Annex I 
The linear model as an approximation of the exponential model 
 
Using Taylor series expansion, it can be shown that the linear model is an 
approximation of the exponential model. Two methods are considered 
 
i. Method 1 
 
The exponent exp[-hM] can be written as 
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ii. Method 2 
 
Liaw and Ledent (1980) show that a method developed in engineering for 
the discrete approximation of continuous-time state equations may be 
applied to show the relation between the exponential model and the linear 
model. It is the Matrix Continued Fraction (MCF) method developed by 
Shieh et.al. (1978). To make the MCF method transparent, Liaw and Ledent 
consider the expansion of the number 1.2345 into a continued fraction: 
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The retention of the first few Hj results in a fairly good approximation of the 
original number. For instance, the retention of the first three Hj gives the 
number 1.2308. 
 
Application of the MCF method to approximate exp[-(y-x)M(x,y)] gives 
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Shieh et al. (1978) show that 
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Let Gj be the estimate of exp[-(y-x)M(x,y)] by retaining only the first j H 
matrices. Then we get 
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which is the linear approximation of the exponential model. The linear 
model is therefore obtained by retention of the first three Hj in the MCF 
method.  
 
There is a difference between ignoring the higher Hj in the MCF method 
and disregarding the tail of the Taylor series expansion. Shieh et al. (1978) 
observe that  
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which differs from the Taylor series expansion. 
 
 
 
 
 


